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1 Container Ship Stowage Problem (CSSP)

1.1 General Description

Schedule For CSSP, a container ship visits ports 1,2,...,n in a circular route, i. e. after
visiting port n, the ship returns to port 1. Furthermore, the ports are partitioned .
into two sets. At each port, the ship must unload any container which has that port
as its destination and may load containers destined for any of the ports in the other
partition. Currently, we have assumed that the ship starts and finishes empty, though
this may not be realistic.

Storage Containers are stored in stacks on the ship. Usually, each slot on the ship can
accommodate up to two TEUs. Each stack may only be accessed from the top. In
addition, due to various restrictions, each stack on the ship may only contain a certain
number of containers. This number differs from ship to ship and may differ from stack
to stack within a particular ship due to its design. Also, the maximum number of
containers in a stack may depend on attributes of containers in the stack, for example,
weight limits on the lower containers may not be exceeded. Finally, there may be a
large number of constraints due to types of containers and where they may be placed
within the ship. This varies from ship to ship due to differences in design also.

Loading/Unloading Operations Containers are loaded and unloaded using a container
crane which can access a stack only from the top. Also, a crane may carry up to
two TEUs at once. From my observations, only one crane may work on a bay at a
time and cranes must be at least one bay apart. In addition, when possible, the crane
simultaneously loads and unloads containers. This might be a consideration when
developing a stowage plan for a ship. Finally, due to the increasing width of the ships,
some cranes may not be able to reach all containers in a bay.

Objectives Certainly, we want to minimize the time the ship is in port. One obvious way to
reduce this is to reduce the time for loading/unloading operations. Two main problems
must be addressed in developing a stowage plan, the placement of containers within a
stack (overstowage) and the placement of stacks within a ship (efficiency of cranes).




1.2

1.
2.

Main Characteristics

Containers are stored in vertical stacks.
Each stack can store up to r containers. (r may vary upon location within the ship.)

A crane may access up to B (usually, this is the number of stacks in a bay) stacks
without moving, 1. e. incurring a cost.

The ship has ¢ (port dependent) cranes loading/unloading containers simultaneously.
The ship visits n ports in a circular route.
The ports are partitioned into two sets A and B such that containers are shipped only

between ports in different sets.

Operational Issues

1. How should the containers be loaded at each port in order to minimize total over-

stowage?

In what order should the containers be loaded and unloaded to minimize the ship’s
total time in port?

How should the containers be loaded and unloaded to efficiently use the cranes?

How should the containers be stored in the yard?

Strategic Issues

How does the schedule of the ship affect the overstowage problem?

At what percentage of capacity should the ship operate?

Circular Route versus Reverse Route for CSSP

A ship visits each port only once per cycle in a circular route, whereas it visits n — 2
ports twice per cycle in a reverse route. Thus the savings in overstowage must be
greater than the fixed costs of visiting several ports twice.

In most cases, the ship must travel farther in order to complete a reverse route cycle
than the corresponding circular route.

The ship is empty twice per cycle in a reverse route and possibly never empty in a
circular route. This certainly makes stowage planning at the end ports simpler.

A reverse route may allow the ship to provide better service (larger capacity) to some
ports.
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2.1

Iron Highway Stowage Problem (IHSP)

General Description

Schedule For IHSP, we have a train which, according to literature, will consist of ten

horizontal stacks of fixed length. The train will visit stations 1,2,...,n. We assume
that the train will then visit the stations in reverse order, 1. e. n,n —1,...,1. At
each station, the train must unload any trailers destined for that station and may load
containers originating at that station destined for any of the other stations.

Storage Each stack on the train is of a fixed length L and each trailer, ¢, has a fixed length

l,. Thus, the number of trailers a stack may hold depends on the length of the trailers
in the stack.

Loading/Unloading Operations To access the trailers, two connected stacks, called an

element must be split apart and special ramps lowered. A tractor may then either
unload the first trailer in either stack or load a trailer onto the front of either stack
if there is enough room. As little equipment is necessary to load/unload trailers, the
main limiting factor is operating space needed alongside the tracks to accommodate any
trailers to be loaded or unloaded. It is not unreasonable to assume that some stations
will be larger than others and thus allow more elements to be simultaneously loaded and
unloaded. However, we must be careful. If a station is large enough to accommodate
two elements to be loaded/unloaded, but not large enough to accommodate three,
then it would be unreasonable to assume that we could load/unload the first and
last elements simultaneously. Also, if two elements are loaded/unloaded at the same
station, but not simultaneously, then we assume that trailers may be unloaded from
the first and loaded on the second, but not vice versa. Finally, containers may also be
loaded onto the Iron Highway, but we currently do not address this additional fact.

Objectives As in CSSP, we wish to minimize the total time the train is at a terminal. Thus

2.2

we want to minimize the loading/unloading time. Again, two main problems are the
placement of the trailers within a stack and the placement of stacks within the train.

Main Characteristics

Trailers are stored in horizontal stacks (single access point per stack).

Each stack can store up to r trailers. (r may vary since trailers vary in length.)
Typically, 10 < r < 15. '

Two stacks may be accessed simultaneously.
We will assume that the Iron Highway visits n stations in order, then reverses order.

Up to c (station dependent) elements may be loaded/unloaded simultaneously.



The order the trailers are loaded in and the order in which elements are accessed are
not independent of each other.

Operational Issues

How should the trailers be loaded at each port in order to minimize overstowage?

In what order should the trailers be loaded?

Strategic Issues

1. How does the schedule of the train affect overstowage?

3

3.1

At what capacity should the train operate?

How should items be treated where it is possible to delay loading (because of the
reverse route)?

Should the train stop at every terminal every time it passes it?
At what percentage of capacity should the train operate?

Should additional loading and unloading equipment be used at some terminals? If so,
how should it be used?

Is a circular route possible? Is it practical?

Should the Iron Highway always transport a trailer to the terminal closest to its final
destination? (Likewise, should it always transport a trailer from the terminal closest

to its origin?)

Should routes for various trains overlap to provide larger service? If so, where should
they overlap and how should items be transferred from one train to another?

Singlestack Railcar Access Problem (SRAP)

General Description

Schedule For SRAP, we have a train which consists of railcars which can carry trailers or

containers. Each railcar has five slots. We will assume that all railcars are identical
and each of the five slots on a railcar are identical, though we know that both of these
assumptions are not true. In addition, the train visits n stations in order then reverse
order,i. e. 1,2,...,n,n—1,...,1. At each station, any trailers or containers with that
station as the destination must be unloaded and trailers or containers may be loaded
to be transported to any of the other stations. In addition, we may allow objects to
be delayed until we return to this station if we return to this station before visiting



the object’s destination. Additionally, we may have groups of objects with a common
destination which are to be shipped on another train. In this case, if possible, we
would like to transfer a full car of objects to be connected to the other train rather
than unload five objects from one car on the current train only to load the same five
on a railcar on the other train.

Storage In this scenario, the objects are not stacked. Requirements for unloading depend
only on the loading/unloading equipment.

Loading/Unloading Operations Unfortunately, there is a wide variety of equipment used
in the loading and unloading operations. Some of the types of equipment include:

1. Gantry cranes - These cranes may allow access to multiple rails at once. They
have limited parallel movement to the tracks. They may be outfitted with either
top loading mechanism or bottom loading mechanism. The bottom loading mech-
anism allows freedom in picking objects, but may inhibit which railcars objects
may be loaded to.

2. Forklifts - Forklifts have restrictions on the weight of the container that it may
pick. They have more freedom of movement around a yard then a gantry crane.

Objectives The objectives are unclear in this problem, since there is a wide variation in
the equipment used. It seems reasonable that some grouping of objects with common
origins and common destinations would be beneficial when possible. Also, it seems
that it may be beneficial to reorder some objects at stations which are better equipped
in order to save time at stations which are equipped with less efficient equipment.

3.2 Main Characteristics

1. Trailers or containers are stored on railcars.

2. A railcar can hold a total of five items.

o

We will erroneously assume that the five slots are identical.
We have some freedom in choosing when to load objects.

We particularly want to group objects to be transferred to another train.

o o

This problem is extremely equipment dependent.

3.3 Strategic Issues

1. At what capacity should the train operate? lL.e. should the train have empty railcars?
If so, how many?



2. Given the existing rail system, what routes should be used? Assuming that routes
overlap to allow shipment from terminals on one route to another, which terminals
should overlap?

3. Assuming that we allow containers to be shipped from terminals in one route to ter-
minals in a different route, how do we schedule the trains in order to provide this
service?

4. Assuming that demand is not equal, how should empty railcars be dealt with?

4 Intermodal Core Network Design

Most of the container ship and intermodal rail services are driven by a core network. This
core network provides regularly scheduled service between hubs. In fact, this schedule is
published months in advance. In addition, several of the large LTL carriers are moving to a
scheduled core network, i.e. truck loads between hubs are scheduled rather then load driven.
For the problem, assume we are given a set of hubs, a geographical network connecting the
hubs, a set of travel times over the geographical network, and the daily number of loads
between hubs. We need to determine the route and schedule each load will follow, the route
and schedule each vehicle will follow, and assign loads to each vehicle.

We first examine the case where we use vehicles with capacity one. For this case, the set
of load routes will be a subset of the routes of all the vehicles.

4.1 Main Issues

Routing: Given the information above, how should each load be routed. It may be cheaper
to route some loads along paths other then the shortest path in order to take advantage
of backhaul miles of other loads. If we assume that each vehicle route consists of
delivering a load from hub ¢ to hub 7, then returning to ¢, then the worst case set of
vehicle routes is twice the set of load routes.

Scheduling: Given the route for each load, how do we schedule the loads? Since the
schedule is constrained by desired service constraints and also crew (vehicle) constraints
(i.e. limits on the number of hours a crew can operate the vehicle, union work rules,
etc.), this is not trivial. Given that one load is a backhaul for a second load, the
schedule must reflect this.

Vehicle Assignment: We need to tell each vehicle and crew which loads to deliver. In
addition, we may have some vehicles and crews deadhead to deliver additional loads,
to meet union restrictions, etc.

4.2 Additional Issues

1. Can we find a feasible solution?



2. How many vehicles do we need?
3. How many crews do we need?

4. How do we compare solutions?

5. Where should drivers be located?

6. Given a solution, how do we relocate existing resources to implement this solution?

4.3 Solution
4.3.1 Routing

For routing the loads, consider the following three restrictions: 1) we assume that all loads
with the same origin and same destination must follow the same path, 2) we restrict our
vehicle routes such that the vehicle must return along the same path, and 3) we assume that
if load k;, and load k; are routed in opposite directions then either k, is a backhaul for k,
or vice versa. We can then model the load routing as the following special multi-commodity
flow problem. We are given a graph G = (U, V), a set of edge weights tt;; = t¢;;, and a set
of commodities C = {cx = (origin,,dest.k,vol.k)}; &k = 1,...,|C|, we wish to find a route
(path) for each commodity (load). Consider the following integer program:

Min. R(z) = i Ui

1  if « = origin,

ST ¥,zk— %ok = —1 ifi=dests ;C:ll’“"l"é"
0 otherwise oo
gij — i vol.zl; > 0 (4,7) eV
gi; — Tk vol.ka:?t- >0 (1,7) €V

zfj € {O’ 1}

Then z is a solution to the routing problem if and only if z is a solution to the IP.

4.3.2 Load scheduling |

Assume that the travel time on each edge is less then half of the total amount a single vehicle
can operate at one time. Assume that a single vehicle will depart from node 2, go to 7, wait
for a specified amount of time, then return to i. Thus, a vehicle assignment consists of a
bipartite matching on each edge. «
Assuming that we have a matching for the vehicle assignment problem and z is a solution
to the routing algorithm, we can solve a linear program to find the departure times for each

load of each commodity at each hub. Let path® = (hubf, hubk,.. .,hubﬁmh,.l) be the path
all loads of commodity k will follow. We need to determine dtf‘f‘bl,,k =1,...,|C|;l =
1,...,volg;s = 1,...,|path*| — 1, i. e. we simply need to set a departure time for each

leg of each load. Now, we wish to minimize the vehicle slack time subject to the load
constraints, i.e. each leg must have a departure time equal to the sum of the departure time




of the previous leg + the travel time of the previous leg + load slack time and load service
constraints. Also, for each matching we will have an equation: the departure time of the
second leg equals the departure time of the first leg + the travel time of the leg + vehicle
slack time. We note that all variables will be non-negative as well. Let M be the set of
matchings over all edges. Then our LP will have |path*| — 1 equations for each path which
implies ° z¥; — |C| + | M| total equations with approximately 2(3_ zf; — |C|) + | M| variables.

However, we must be careful here. We can easily derive a matching that would yield an
infeasible LP. However, if we solve the matching using feasible departure times, then the LP
will be guaranteed to have a feasible solution. We also note that these two algorithms can
be iterated.

4.3.3 Vehicle assignment

Assume that all loads have been routed and scheduled. (Assume that only loads have been
scheduled - not empty loads for completing a round trip.) By scheduled, we have assigned
departure times for each load at each hub. We wish to assign vehicles to routes. Assume
that the travel time on each edge is less then half of the total amount a single vehicle can
travel at one time. If we assume that a single vehicle will depart from node ¢, travel to j,
wait for a specified amount of time, then return to z, then we can find the minimum weight
vehicle assignment subject to vehicle and load constraints.

By our assumption of a vehicle assignment, we note that we can assign vehicle routes at
each edge independently. Consider one edge (z,7). Construct the auxiliary bipartite graph
G, = (A, B,E) in the following way. Let A = the loads from 7 to j and B = the loads
from j to 7. Add |B| dummy nodes, dn to A and |A| dummy nodes, dn to B. Now let
(joba,jobs) € E if either dtjop, + tti; < dtjon, OF dijop, + tti; < dijon,. We will give this edge
a weight of driver fixed cost + vehicle slack time cost + travel time. Also, for each job,
we include (job,,dn) € E with a weight of vehicle fixed cost + twice the edge travel time.
Similarly, we include the edge (jobs,dn) € E for each joby. Now, we can solve a minimum
weight bipartite matching problem. Obviously, we can do this for each edge (3, 7) to minimize
subject to our assumed vehicle assignment description.

4.3.4 Initial solution
Algorithm
1. Generate the set of load-paths (one path per load).

2. Order the load-paths. (currently, according to total travel time of the path, in decreas-
ing order)

3. Set k=1.
4. Assume that the departure times of the k — 1 paths already scheduled is fixed.

5. Let U;; = the set of unmatched edges at edge (4, 7) in the direction (2, 7).



6.

7.

Set the departure times of the kth path such that the departure times are feasible and
the load segments can be matched to the largest weighted set of unmatched edges (by
trial and error).

Increment k and repeat the last three steps until all load-paths have been scheduled
and matched.

4.3.5 Additional Comments

1.

5

The solution techniques for the vehicle assignment and load scheduling seem to be
quite robust. We could easily limit the vehicle slack time or load slack time, restrict
the departure time of certain loads, require two load parts to be matched, etc.

Both the vehicle assignment and the load scheduling parts are easily solvable-both
optimize their respective objective functions.

At each iteration of LS, the previous solution to DA is feasible. Similarly, at each
iteration of DA, the previous solution to LS is feasible. Thus T'C can only improve at
each iteration.

Our assumption of a vehicle schedule is unreasonable for short edges.

It is possible that we could cycle between degenerate matchings / LP solutions. Can
we detect these cycles? If not, how do we know when to stop?

How does the solution to Routing impact the final solution?

We should consider adding in constraints in solving the routing problem to limit the
total travel time of a commodity. Otherwise, we could easily increase the travel time
of a shipment by an extremely large amount.

Once you have a final solution (matching) for the vehicle assignment, you can solve for
the departure times in order to revise slack time.

What should the cycle time be?

Container Ship Scheduling Problems

Assume we are given a circular route of ports, (1,2,3,...,n,1), a set time in each port, and
a set travel time for each leg. We are examining the class of problems where we are given
a set of times when the ports are open and an amount of time that the ship must spend in
port 7. Can we find a feasible schedule?



5.1 Definitions and Notation

1. n = the number of ports
2. m = the number of weekends in the work schedule

3. p; = time required in port ¢ (in days)

-~

tt; = travel time from port ¢ to the next port in the sequence (in days)

o

RTT = Round Trip Time = ¥, (pi + tt;)

>

T:; = trip time starting from the arrival at port 7 until departure from port j =
pi +tti 4+ piyr H i+ ...+ pj-1 Hio + Dy

7. b(-) = a function which returns the time a period begins
8. e(+) = a function which returns the time a period ends

9. Note: If we are referring to a time period in a ship schedule, then we will include a
reference to a particular start time.

5.2 Problem Instances

To begin with, assume that all ports are open all during the week and closed on weekends.
Also, assume that all ports are in the same time zone. The first scheduling problem we
address is: “Given a 7 day Ship Schedule, can we schedule the weekend to occur during
a travel time period?” This is extended to: “Given a 7 x m day Ship Schedule, can we
schedule the weekends to occur during travel time periods?” We then introduce slack by
asking: “Given a < 7 day Ship Schedule, can we schedule the weekend to occur during a travel
time period?” and “Given a < 7 x m day Ship Schedule, can we schedule the weekends to
occur during travel time periods?” We generalize again by replacing the weekday / weekend
time sequence by a more generic work / nonwork schedule. However, we still assume for
the slack case that the Work Schedule is longer then the Ship Schedule. Finally, we address
scheduling multiple ships. Note that we assume the Work Schedule is fixed in calendar time,
however, the Ship Schedule is only in relative time.

5.2.1 1 ship / 1 week / no slack

Assume RTT = 7 (weekly service). Is there an initial start time when the weekend (Saturday
and Sunday) does not coincide with a port time?

Solution: Is there an 7 such that tt; > 2?7 If so, schedule the weekend to occur during
that leg of the trip.

10



5.2.2 1 ship / 1 week / slack

Assume RTT < 7 (weekly service). Let slack = 7 — RTT. Is there a schedule when the
weekend (Saturday and Sunday) does not coincide with a port time? (We are allowed to
insert the slack anywhere.)

Solution: Is there an : such that tt; + slack > 27 If so, schedule the weekend to occur
during that leg of the trip.

5.2.3 1 ship / 2 weeks / no slack

Assume RTT = 14 (bi-weekly service). Is there an initial start time when the weekends
(Saturday and Sunday) do not coincide with port times?

Solution: Is there an 7; and %, such that t¢;,tt;, > 2 and Tj, 414, < 5 and Tj,41,, <57
If so, schedule the weekends to occur during those legs of the trip.

Proof. Assume 7; and 1, exist as defined above. Assume also that i; # 1,, otherwise,
the proof is trivial. Now, we are considering two 14 day cycles—one cycle represents the
days of the week and the other cycle represents the alternating port and travel times. We
wish to show that we can schedule the two weekends during the periods tt;, and tt;,. Define
ST = max(0,tt;, + T; +14, — 7). Arrange the cycles such that the first Saturday begins at
ST time into tt,,.

First, assume ST = 0. Thus tt;, starts at the same time as Saturday. Since tt;, > 2, then
the first weekend is contained in tt;,. Also, ST =0 = tt;, + T, 41,5, — 7 < 0= 14, + T3 1,5, <
7 = the second weekend starts after bst(tti,). Now, Tiytr, £ 5=t + T 15, +28:, 2 9=
that the second weekend ends before esr(tt;,) since the two time periods started at the same
time. Thus, the second weekend is contained in tt,,.

Second, assume that ST = tt;, + T}, 414, — 7. By design, the second weekend starts
at bsr(tt;,). Thus trivially, the second weekend is contained in i¢;, since tt;, > 2. Now,
since ST > 0 = tt; + Ti, 414, > 7 = the first weekend starts after bsr(tt;, ). Also, since
Ti +14, < 5, the first weekend ends before esr(tt;,). Thus either way, we can schedule the
weekends to occur during travel legs of the trip.

Thus we have shown that these conditions are sufficient for scheduling the weekends into
travel legs. For the 2 week case, it is obvious that these conditions are necessary. O

Note that while this proof is not trivial, however, it is not terribly complex either. We
tried a similar proof for the three week case. It quickly became clear that to provide a similar
proof for the general case would be notationally difficult and almost algorithmically useless.

5.2.4 1 ship / m weeks / no slack

Assume RT'T = 7m. Is there an initial start time when the weekends (Saturday and Sunday)
do not coincide with port times?
Solution: Consider the following lemma:

Lemma 1 If there is a feasible start time, then there is a feasible start time such that at
least one weekend / travel leg pair has the same beginning time.
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Proof. Let an instance of the scheduling problem be given. Also, let ST be a feasible
start time. If there is at least one weekend / travel leg pair that has the same beginning

time, then we are done. Assume not. Let Sat.; = the jth Saturday and tt;; = the travel leg
containing Sat.; (see figure 5.1). Since ST is feasible and no pair has the same beginning
time, then b(Sat.;) > bsr(tti;) = b(Sat.;) — bsr(tty;) > 0,5 = 1,...m. Let ST = ST +
min;[b(Sat.;) — bst(tt;;)] (see figure 5.2). Then consider the schedule with initial start time
of ST (see figure 5.3). Now, since we simply shifted the travel / port schedule forward by
min;[b(Sat.;) — bsr(tti;)], then it is obvious from figure 5.3 that the weekends will still be
contained in the same travel legs. Algebraically, this can be shown as:

ber(tt;) = bsr(tti;) + min[b(Sat.;) — bsr(tt;,)]
< bsr(tti;) + b(Sat ;) — bsr(tty;)
e(Sat.,-) S esT(tt,'j)
< esr(tt;;) + min[b(Sat.;) — bsr(tty;)]
J
= egr(tt;;)

Since this is true for j = 1,...m, then ST is a feasible start time. In addition, at least one
weekend / travel leg pair will have the same start time. Hence the statement is true. O

..ITIWITIF|SISIMITIWITiFiSIS)MITIWI‘TIF’SIS‘M

It | p | tt;; ’p| tt | p | tti,, ‘p| tt |pl tt |p| tti,, ‘p|
Figure 5.1: An example of a feasible schedule with start time ST

b(Sa.t ) b(S t3+1 b(S J+2
ATIWITIF|SIS|MITIWITIE|SIS|MITIWITIF|SIS|M

ltt | p tt;; |p1 tt | p tt,, lpl tt Ilplttlp tt,, [pl
bsr(tt;) st(tti;,, bsr(tti;,,

Figure 5.2: b(Sat.) — bsr(tt)

This result leads to a simple algorithm for finding a feasible solution if one exists. We
can check and see if starting a weekend at each travel leg results in a feasible schedule. For
each start time, we must do no more than 2m comparisons to check for feasibility. Since we
have n possible start times, then we have an O(nm) algorithm.
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Figure 5.3: New schedule with start time ST

5.2.5 1 ship / m weeks / slack

Assume RTT < 7m (m-weekly service). Let slack = 7m — RTT. Is there a schedule when
the weekends (Saturday and Sunday) do not coincide with a port time? (We are allowed to
insert the slack anywhere and the slack can be broken up.)

Solution: Obviously we can easily generate a schedule if slack + max;(tt;) > 2m. Thus
we only consider cases in which slack 4+ max;(tt;) < 2m, i. e. we must use more than one
travel leg.

Consider the following program. The main input to the program is the ship schedule.
The work schedule is assumed to be m weeks long with Monday through Friday as a work
period and Saturday and Sunday as a nonwork period.

Container Ship Scheduling Algorithm (CSSA)

1. Build a stack called Work Schedule which defines the working schedule. Start
the Work Schedule with a weekend and it should be m weeks long. (Each element
consists of a type, either Work or Nonwork, and length, [.)

2. Loop j=1 to n (j = travel time counter) {

e Build a stack called Ship Schedule which defines the ship’s schedule
starting with Travel time period j. (Each element consists of a type,
either Port or Travel, and length, [.)

e If Find Feasible(Ship Schedule,Work Schedule) = Feasible then return(Feasible
and exit }

3. return(Infeasible)
Subroutine Find_Feasible(Ship_Schedule,Work_Schedule)
1. If Ship Schedule =, return(Feasible)
2. else if Work Schedule =@, return(Infeasible)
3. else if Top of Ship Schedule = Travel Time {

e Define temp = length of Top of Ship Schedule
e Remove temp amount of time from the Top of Work.Schedule

e Remove temp amount of time from the Top of Ship Schedule

13




o return(Find Feasible(Ship Schedule, Work Schedule)) }
4. else if Top of Work Schedule = Work Period {

e Define temp = length of Top of Work Schedule
e Remove temp amount of time from the Top of Work_Schedule
e Remove temp amount of time from the Top of Ship Schedule

e return(Find Feasible(Ship Schedule, Work._Schedule)) }

5. else (Top of Work Schedule = Nonwork Period and Top of Ship Schedule = Port
Time) {

e Define temp = length of Top of Work Schedule
e Remove temp amount of time from Top of Work Schedule

e return(Find Feasible(Ship Schedule, Work_Schedule)) }

Now, to show that the algorithm works, we must first show that if a feasible schedule
exists, then a feasible schedule exists with a weekend and a travel time period starting at the
same time. We note that this algorithm simply returns ‘Feasible’ or ‘Infeasible’, however,
the algorithm can easily be modified to return the associated schedule. Thus, consider the
following lemma:

Lemma 2 If there is a feasible solution, then there ezists a feasible solution such that at
least one weekend and travel time period have the same beginning time.

Proof. Let an instance of the problem with a feasible solution, ST, be given (see figure
5.4). Define a weekend containing time slot (WCTS) as any period or periods which contain a
weekend. First, we observe that since we can insert slack anywhere, if we have a WCTS which
is entirely slack, then we can easily modify the start time without affecting this WCTS’s
ability to contain a weekend. Secondly, we observe that given a WCTS containing slack and
a travel time period, we can easily redistribute the slack before and after the travel period

while retaining a feasible solution. Let Sat.; = the jth Saturday and WCTS;; = the WCTS

containing the jth weekend (see figure 5.5). Define S as the set of indices of WCTSs that
are entirely composed of slack. If there is a j such that b(Sat.;) = bsp(WCTS;;),3; € S,
then we are done. Assume not. Since ST is feasible and no pair has the same beginning
time, then b(Sat.,-) > bST(WCTS,'j) = b(Sat.j) — bST(WCTS;J-) > 0. Let ST = ST +
min;y;; ¢s[b(Sat.;) — bst(WCTS,;)]. Then consider the schedule with initial start time of
ST (see figure 5.6). Now, since we simply shifted the travel / port schedule forward by
minj;, ¢s[b(Sat.;) > bst(WCTS,;)], then it is obvious in figure 5.6 that the weekends will
still be contained in the same WCTSs. This can be shown algebraically as:

bST(WCTSij) = bST(WCTSt’j) =+ rnln [b(Sa.t.J-) — bST(WCTS,J)]

jli; €S

< bST(WCTS,'J.) + b(Sat.j) — bgT(WCTS,']-)
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= b(Sat.j)
e(Sat.;) < esp(WCTS;;)
< eST(WCTS,'j) + I'IllgI‘lg[b(SatJ) - bST(WCTSi,- )]
Il
= egr(WCTS;,)

Since this argument holds for each 7li; S and there is a trivial argument for j|i; € S, then
ST is a feasible solution. In addition, at least one weekend and travel time period will have
the same start time. Hence the lemma is true. O

ITIWITIF|SIS|MITIWITIF|SIS|MITIWITIF|SIS|M
(1 p |ttyls|pl 8 | p |t lspl & Ipltt |p|slack |pl ...
Figure 5.4: A feasible schedule, ST

ATIWITIF|SIS|MITIWITIE|SIS|MITIWITIF|SIS|M

ltt | p [WCTS|pl tt | p |WCTS;,,
bsT(WCTS;,) bsr(WCTS

pl tt 1p| tt Ip|slack |pl ...

41

Figure 5.5: b(Sat.) — bsr(WCTS)

L ITIWITIF S|S|MIT|W|T|F SIS'MITIWITIF SIS‘M

|41 p [WOTSypl tt | p |WCTSy,l|pl ¢t Ipltt g slack | pl...

Figure 5.6: New solution, ST

Secondly, we must show that if a feasible schedule exists with travel time period j and
a weekend starting at the same time, then our algorithm can find a feasible schedule. First,
we will give a brief discussion of how the algorithm works. The algorithm tests starting each
travel time period at the same time as a weekend. Once the starting time is established, the
algorithm ensures that only feasible times are matched between the two schedules. The only
infeasible match is Port time matched with Nonwork time. Thus, in this case the algorithm
inserts the necessary amount of slack to make a feasible match. The algorithm also takes
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advantage of the recursive nature of the problem. If we have a current feasible match, then
we have a feasible solution if the remainder of the two schedules can be feasibly matched. The
algorithm terminates when one of the two schedules ends. If Ship_Schedule ends before or at
the same time as Work_Schedule, then we have found a feasible solution. If Work_Schedule
ends before Ship_Schedule, then we have inserted more slack then is available and thus we
do not have a feasible solution.

Lemma 3 CSSA finds a feasible schedule if one ezists.

Proof. Let an instance of the problem be given. Assume that a feasible solution ST
exists. By the previous lemma, we may assume that a travel time period, say tt;, and a
weekend begin at the same time in ST. Furthermore, we will assume that t¢, is the first
period in ST (if not, because of the circular nature of the schedules we can easily rewrite
ST such that this will be true). Now, let AS be the infeasible solution generated by CSSA.
Now consider the first point at which slack occurs in either ST or AS, but not both. (Note
that ST and AS will be identical up to this point.) We have four cases:

1. ST = Travel Time, AS = Slack Time
2. ST = Port Time, AS = Slack Time
3. ST = Slack Time, AS = Port Time

. 4. ST = Slack Time, AS = Travel Time

Case 1: ST = Travel Time and AS = Slack Time. Since this is the first point at which
slack occurs in either ST or AS, but not both, then this implies that ST and AS must be
identical up to this point. Thus, the period occurring after the Slack Time in AS must be
Travel Time. However, the only way slack can be inserted by CSSA is before Port Time.
Thus, by contradiction, this case is impossible! '

Case 2: ST = Port Time and AS = Slack Time. Again, since this is the first point at
which slack occurs in either ST or AS, but not both, then this implies that ST and AS must
be identical up to this point. However, we note that any slack inserted by CSSA corresponds
to a Nonworking period in the Work Schedule. Thus, ST has Port Time matched to Non-
working Time. Since we have assumed that ST is a feasible schedule, then by contradiction,
this case is impossible!

Case 3: ST = Slack Time and AS = Port Time. Since this is the first point at which
slack occurs in either ST or AS, but not both, then this implies that ST and AS must be
identical up to this point. Thus, the period occurring after the Slack Time in ST must be
Port Time. Since the schedule generated by our algorithm does not allow for an infeasible
match, then the corresponding time slot in the Work Schedule must be a Work Period. Thus
it is obvious that swapping the Slack Time period in ST with the Port Time period occurring
after it will yield a new solution ST; which will be feasible and will match AS in one more
period.

Case 4: ST = Slack Time and AS = Travel Time. Since this is the first point at which
slack occurs in either ST or AS, but not both, then this implies that ST and AS must be
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identical up to this point. Thus, the period occurring after the Slack Time in ST must be
Travel Time. It is obvious that swapping the Slack Time period in ST with the Travel Time
period occurring after it will yield a new solution S7) which will be feasible and will match
AS in one more period.

By recursively applying the above, we obtain that if a feasible solution exists, then AS
is indeed a feasible solution. One final note is that for this procedure to work we need the
additional restriction that ST has a finite number of periods. While it is possible to have
solutions with an infinite number of periods, it is intuitive that if both the Work Schedule
and the Ship Schedule have a finite number of periods then if a feasible solution exists, then
there is a feasible solution with a finite number of periods. O

5.2.6 m ships / m weeks / no slack

Assume RTT = Tm, is there an initial start time when the weekends (Saturday and Sunday)
do not coincide with a port time?

Solution: Same as 1 ship / m weeks / no slack. Simply start the ships exactly seven
days apart.

5.2.7 m ships / m weeks / slack

Assume RTT < 7m. Let slack = Tm — RTT. Is there an initial start time when the
weekends (Saturday and Sunday) do not coincide with a port time? (We are allowed to
insert the slack anywhere and the slack can be broken up.)

Solution: Same as 1 ship / m weeks / slack. Simply start the ships exactly seven days
apart.

5.2.8 1 ship / General work schedule / no slack

Assume we have a Ship Schedule and a Work Schedule of equal length. The Ship Schedule
has n alternating travel and port periods and the Work Schedule has m alternating work
and nonwork periods. Is there a starting time where the port periods are matched to work
periods? Consider the following lemma which is analogous to lemma 1:

Lemma 4 If a feasible start time ezists, then there ezists a feasible start time where a
nonwork period and a travel period start at the same time.

Proof. Note that lemma 1 makes no assumption about the length of the individual
weekends (nonwork periods). Thus, the proof holds for this more general case. O

Now, we simply check to see if starting each nonwork period at the same time as each
travel period results in a feasible schedule which is an O(nm?) algorithm.
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5.2.9 1 ship / General work schedule / slack

Assume we have a Ship Schedule and a Work Schedule such that the Ship Schedule is shorter
then the Work Schedule. The Ship Schedule has n alternating travel and port periods and
the Work Schedule has m alternating work and nonwork periods. Is there a starting time
where the port periods are matched to work periods? Consider the following lemma:

Lemma 5 If there is a feasible solution, then there exists a feasible solution such that at
least one nonwork period and travel time period have the same beginning time.

Proof. Since the proof of lemma 2 does not use the length of the weekends nor the cyclic
nature of the week, then the proof will work here also. O

The previous lemma implies that we can simply run the algorithm for the 1 ship / m
weeks / slack case m times modifying the Work_Schedule to start with a different nonwork
period each time.

5.2.10 1 ship / Multiple work schedules / no slack

Consider the following more general case of the problem: We are given a fixed time schedule
for a ship including a route (ordered set of points) and a fixed amount of time to spend in
each port and a fixed travel time for each leg. In addition, we are given a port work schedule
for each port. '

We will assume that each port work schedule is of length T and is cyclical. In addition,
we will assume that the ship schedule is cyclical and of length T. Is there a starting time
such that the ship is in port during that port’s working hours (i. e. each p; occurs during a
wp,)? Let m; = the number of nonwork periods in the work schedule for port 7,2 =1,...,n.

Lemma 6 If a feasible schedule ezists, then there ezists a feasible schedule such that the
ship arrives at port at the beginning of a work period for at least one port.

Proof. Let an instance of the problem be given. Assume we have a feasible schedule ST'.
Then each port time, p;, is contained in a work period. Let jp,; be the subscript of the work
period containing it. If there is a p; such that bsr(p;) = b(w;,, ), then we are done. Assume
not. Now, let ¢ = min[bsr(p;) — b(wjp‘, )]. Define ST; = ST —t. Now we must show that STy

is a feasible start time. For any ¢,

b(wj,.) = bsr(p:) = bsr(pi) + b(wj,,)

(pi)
= bst(p:) — (bsr(p:) — b(wy,, )
< bST(Pi) - min[bST(pi) - b(wjr.' )]
= bsr(p:) —t
= bst, (pi)
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Also, est, (pi) < est(p:i) < e(wj,,). Thus, each p; is contained in a work period which implies
that ST is feasible. O

Thus, we can use an algorithm similar to the one described for the 1 ship / General
work schedule / no slack case. However, instead of starting travel and nonwork periods
at the same time, we are starting port and work periods at the same time. In addition,
instead of comparing each port period to a master work schedule, we use the appropriate
work schedule for each port.

5.2.11 1 ship / Multiple work schedules / slack

This is the same as the 1 ship / Multiple work schedules / slack problem except that
the length of the ship schedule < T'. Consider the following lemma:

Lemma 7 If there is a feasible solution, then there ezists a feasible solution such that at
least one work time period and port time period have the same beginning time.

Proof. Let an instance of the problem be given. Assume we have a feasible schedule
ST. Then each port time, p;, is contained in one or more work periods. However, if p; is
contained in more then one work period, then slack must be inserted during the intervening
nonwork periods. Let j,, be the subscript of the work period containing the first portion of
p;. If there is a p; such that bsr(p:) = b(wj,, ), then we are done. Assume not. Now, let
t = min[bsr(p;) — b(wj,,)]. Define ST, = ST —¢. Now we must show that ST is a feasible
start time. Consider the following two cases:

Case 1: If p; is contained in a single work period in ST, then the following argument
holds:

b(wj,,) = bsr(pi) — bs(p:) + b(wjp,)

(pi) -
= bsr(p:) — (bst(pi) — b(wjy,))
< bsr(p:) — minfbsr(p:) — b(wj,, )]
= bgr(p:i) —t
= bst,(p:)

Also, est, (pi) < est(pi) < e(wj,,). Thus, p; is contained in a work period.

Case 2: If p; is contained in multiple work periods in ST, then there is at least enough
work time in the period between bsr(p;) and bsr(p;) to contain p;. Now, consider the time
interval (bST(pi) - min[bST(pg) - b(wJ-P‘_ )], e,gT(p,') — min[bST(pg) - b(wjp‘,)]). Since

b(ws,,) = bsr(pi) — bsr(p:) + b(wj,,)

bST(P:) (bst(p:) — b(wj,))
st(p:) — minfbsr(p;) — b(wj,, )]

IA
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Then we have an interval the same length as the interval (bsr(p:), bs7(p:)) and since we
have added min[bst(p:) — b(w;,,)] amount of work time to the new interval, then the new
interval has at least as much work time as the old interval. Thus, it is easy to see that by
intelligently rearranging the slack in the new interval it is easy to see that we can schedule
p; to be contained by work time.

Thus, we have a new feasible schedule in which at least one port time period and one
work period begin at the same time. Hence the lemma is true. O

5.2.12 1 ship / Noncyclical work schedule / no slack

Assume we are given Ship Schedule and a Work Schedule. The Ship Schedule has n alter-
nating travel and port periods and the Work Schedule has m alternating work and nonwork
periods. In addition, the Ship Schedule is shorter than the Work Schedule and the schedules
are not cyclical in nature. For the no slack case, we are not allowed to insert any slack time
into the ship schedule. Is there a starting time where the port periods are matched to work
periods?

First, we note that there are two immediate bounds on the starting time. Let L be the
start time associated with starting the first port period at the same time as the first work
period. Similarly, define U to be the start time associated with ending the last port period
at the same time as the last work period. It is clear that any feasible start time ST will have
the property, L < ST <.U. Consider the following lemma:

Lemma 8 If a feasible schedule ezists, then there ezists a feasible schedule such that the
ship arrives at port at the beginning of a work period for at least one port.

Proof. Let an instance of the problem be given. Assume we have a feasible schedule ST'.
Then each port time, p;, is contained in a work period. Let jp; be the subscript of the work
period containing it. If there is a p; such that bsr(p;) = b(wj,, ), then we are done. Assume
not. Now, let ¢ = min[bs7(p;) — b(wjpi )]. Define ST} = ST —t. Now we must show that ST}

is a feasible start time. For any ¢,

b(wj,,) bsr(p:) — bst(pi) + b(wj,,)
bsr(p:) — (bst(pi) — b(wy,,))
< bsr(pi) — minfbst(pi) — b(wj,, )]
= bsr(p) —t
= bst, (pi)

Also, est, (pi) < est(pi) < e(wj,,). Thus, each p; 1s contained in a work period which implies
that ST is feasible. However, we must also show that L < STy < U.

L = ST-ST+1L
= ST—(ST-1L)

20




ST — (bst(p1) — b(nwy))

< ST — minfbsr(pi) — b(wjm)]
ST —t

= ST,

< ST

< U

Thus, ST, is indeed a feasible start time. O

This implies that we can use the algorithm for the 1 ship / General work schedule
/ no slack case with the slight modification that we calculate the corresponding start time
when testing starting a port period and work period at the same time. In addition, we can
improve the efficiency of the algorithm by making use of L and U.

5.2.13 1 ship / Noncyclical schedules / slack

Assume we are given Ship Schedule and a Work Schedule. The Ship Schedule has n alter-
nating travel and port periods and the Work Schedule has m alternating work and nonwork
periods. In addition, the Ship Schedule is shorter than the Work Schedule and the schedules
are not cyclical in nature. For this case, we are allowed to insert slack time into the ship
. schedule. Is there a starting time where the port periods are matched to work periods?

We note that we can define upper and lower bounds on the starting time similar to the
no slack case. In addition, the following lemma holds:

Lemma 9 If there is a feasible solution, then there ezists a feasible solution such that at
least one work time pertod and port time period have the same beginning time.

Proof. Let an instance of the problem be given. Assume we have a feasible schedule
ST. Then each port time, p;, is contained in one or more work periods. However, if p; is
contained in more then one work period, then slack must be inserted during the intervening
nonwork periods. Let j,, be the subscript of the work period containing the first portion of
p;. If there is a p; such that bsr(p:) = b(w,-p‘_), then we are done. Assume not. Now, let
t = min[bsr(p;) — b(wj,,)]. Define STy = ST — ¢. Now we must show that ST; is a feasible
start time. Consider the following two cases:

Case 1: If p; is contained in a single work period in ST, then the following argument
holds:

b(wj,,) = bsr(pi) — bsr(p:) + b(wj,,)
= — (bst(p:) — b(wjy,))

- min[bsr(?i) - b(wjp;)]
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Also, est, (pi) < est(pi) < e(w;,.). Thus, p; is contained in a work period.
Case 2: If p; is contained in multiple work periods in ST, then there is at least enough
work time in the period between bsr(p;) and bsr(p;i) to contain p;. Now, consider the time

interval (bsr(pi) — minfbsr(p;) — b(w;,, )], est(p:) — min[bsr(p:) — b(w;,, )]). Since

b(w;,,) = bsr(pi) — bsr(p:) + b(wj,,)
bst(p:) — (bst(pi) — b(w;,,))
bst(pi) — minfbsr(p;) — b(w;,, )]

IA

Then we have an interval the same length as the interval (bsr(p:), bsr(pi)) and since we
have added min[bsr(p;) — b(w;, )] amount of work time to the new interval, then the new
interval has at least as much work time as the old interval. Thus, it is easy to see that by
intelligently rearranging the slack in the new interval it is easy to see that we can schedule
p; to be contained by work time.

In addition, consider the following argument:

L = ST-ST+1L
ST — (ST — L)
ST — (bst(p1) — b(nw,))

< ST — min[bsr(p:) — b(w;,;)]
= ST-t
STy
< ST
< U

Thus, we have a new feasible schedule in which at least one port time period and one work
period begin at the same time. Hence the lemma is true. O

However, once again we have to modify our algorithm for this particular problem. Since
the schedule is not cyclical, then we do not have the freedom to choose where within the
schedules to start. First, we note that since we are only concerned with matching port time
to work time then we can remove any travel time that occurs at the beginning or ending of
the Ship Schedule. Secondly, we note that to test starting p; at the same time as w;, we
formulate two problems. We first test to see if we can find a feasible schedule given the Ship
Schedule starting with p; and the Work Schedule starting with w;. This is easily done using
Find Feasible. Next, we use Find Feasible again using the reverse of the ship schedule as
Ship_Schedule ending with the period before p; and the reverse of the work schedule ending
with the period before w; to test feasibility for the first portion of the schedule.
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5.2.14 1 ship / Minimize overlap / no slack

Given one of the 1 ship / General work schedules / no slack problems, if a feasible
solution does not exist, can we find a solution with minimum port / nonworking period
overlap?

Let an instance be given. Let S be a start time. Note that there are four types of overlap:

1. bs(p,’) < b(nwj < es(p,') < e(nw,-

) )
2. b(nwj) < bs(p,') < e(nw,-) < Cs(Pi)
3. bs(pi) < b(nw,) < e(nw;) < es(p:)

)

4. b(nw;) < bs(p:) < es(p:) < e(nw;
and two types of potential overlap:

1. bs(pi) < es(pi) = b(nw;) < e(nw;)

2. b(rw;) < e(mu;) = bs(p) < es(p)

Let s be a small amount of time. Now consider the start time S — s. Assuming that s is
small enough, each overlap of type 1 is reduced by s, each overlap of type 2 is increased by
s, and each overlap of type 3 or 4 remains the same. Also, we have an additional overlap of
s for each potential overlap of type 2. We will call S a left local optimal start time if S — s
has more overlap then S and S+ s has at least as much overlap as S. Thus if S is a left local
optimal start time, then the number of type 1 overlaps plus the number of type 1 potential
overlaps exceeds the number of type 2 overlaps and the number of type 2 overlaps plus the
number of type 2 potential overlaps > the number of type 1 overlaps.. Similarly, we define
a right local optimal start time if S + s has more overlap then S and S — s has at least as
much overlap as S.

Let Or = the set of left local optimal start times and Og = the set of right local optimal
start times. Let Og = the set of globally optimal start times. Define z(.S) to be the amount
of overlap of start time S. Assume that Og is not the entire set of start times. Note that
S is continuous which implies that z is continuous. Then, there is at least one start time in
Oc that is also in Or. Thus if we can find all solutions in O, then we can find a globally
optimal start time. Consider L, the set of solutions with at least one potential overlap. It is
clear that O C L. Note that L is exactly the set of solutions that CSSA produces.

5.2.15 Multiple ships / Cyclical Schedules / No slack

Assume that we are given a route, travel and port times, and a work schedule. We wish to
create a schedule with a frequency policy, F. (Note that we use policy instead of a number
since there may be various descriptions such as ‘daily’ or ‘weekly’ but there also may be
descriptions such as ‘every weekday’ or ‘Mon., Wed., Fri.’) Is there a feasible schedule with
policy F? For the ‘no slack’ cases, we will assume that the Ship and Work Schedules are of
length, T'.
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Fixed Time Frequency Policy A Fixed Time Frequency Policy provides a specific time
link between the Work Schedule and the Ship Schedule. Some examples include:

1. Each ship leaves Port 1 at 9:00am Monday.

2. Ship 1 arrives at Port 1 at 10:00am Tuesday.
Ship 2 arrives at Port 3 at 5:00pm Thursday.
Ship 3 departs Port 6 at 2:30am Saturday.
Etc.

A Fixed Time Frequency Policy is easy to solve. We simply test the feasibility of the
Work Schedule and Ship Schedule time link for each ship.

Fixed Time Windows Frequency Policy This case is similar to a Fixed Time Fre-
quency Policy, except that a time window is given for each ship. Some examples include:

1. Ship 1 leaves Port 1 on Monday, Ship 2 leaves Port 1 on Wednesday, Ship 3 leaves Port
1 on Friday, etc.

2. Ship 1 leaves Port 2 between noon and midnight, Ship 2 leaves Port 4 between 6:00am
and 10:00am, etc. '

Solution: Test for a feasible schedule for each ship. Since the ships departure times
are independent, then we are simply testing the feasibility of each ship, thus we can use a
previous lemma regarding feasibility and a time window on the start time of the ship.

Lemma 10 If a feasible schedule for a ship ezists such that either a port / work period pair
start at the same time or the event described happens at the earliest time possible in the time
window.

Relative Time Frequency Policy A Relative Time Frequency Policy provides a relative
time link between the ships. Some examples include:

1. 5 ships equi-time apart (7'/5)
2. Ship 2 is 3 days behind ship 1, ship 3 is 2 days behind ship 2, etc.

This can be translated into a frequency schedule, i. e. a schedule of length T which indicates
the time spacing between the ships.

Now, assume that we have a series of feasible start times, STy, ST, . . ., which satisfy the
frequency schedule. Consider the following lemma:

Lemma 11 Given a series of feasible start times ezists, then there ezists a series of feasible
start times such that at least one ship arrives in port at the beginning of a work period.
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Proof. Let an instance of the problem be given. Assume we have a series of feasible start
times, STy, ST3, . ... Then each port time, p,;, is contained in a work period. Let 7,; be the
subscript of the work period containing it. If there is a p,; such that bsr,(p.;) = b(wj, ),
then we are done. Assume not. Now, let t = min[bsr, (p,) — b(wj, ;)]. Define ST, = ST, —t.
Now we must show that ST, is a feasible start time. For any s and 1,

b(wj,;) = bst,(Psi

(Pai) — bsT,(psi) + b(wj, ;)

bst,(Pasi) — (bsT,(Pss) — b(w;, ;)

bst,(Pss) — min[bst,(ps,i) — b(wj, ;)]
(Psi) —
(Psyi)

IN

bst,(psi) — 1

bsr, (P,

Also, egr,(ps;) < est,(psi) < €(wj,;). Thus, each p,; is contained in a work period. In
addition, since we subtracted the same amount of time from each schedule, then the new
series of start times has the same time spacing as the old series of start times which implies
that the new series of start times is feasible. O

Thus we can use the ‘no-slack’ algorithm to find a single feasible schedule and then test
it in each position of the relative schedule for feasibility.

Relative Time Windows Frequency Policy This case is not as straightforward as
the previous cases. Both of the fixed time cases are straightforward in that we can reduce
the problem to testing feasibility for each ship separately to determine whether the overall
problem is feasible. Now, while the Relative Time Frequency Policy has interdependent ship
start times, it has the benefit that given the start time of any ship, the start time of the
remaining ships is then fixed. However, introducing time windows into the relative time case
presents some problems. The first problem is problem definition. Consider the following two
examples. While the problem statement is similar, they are structurally different.
1. Ship 2 starts between 28 and 35 hours after Ship 1.
Ship 3 starts between 28 and 32 hours after Ship 2.

Ship 4 starts between 28 and 32 hours after Ship 3.

2. Ship 2 starts between 28 and 35 hours after Ship 1.
Ship 3 starts between 56 and 63 hours after Ship 1.
Ship 4 starts between 84 and 90 hours after Ship 1.

The following lemma from the Relative Time Frequency Policy holds for this case as well.

Lemma 12 Given a series of feasible start times ezists, then there exists a series of feasible
start times such that at least one ship arrives in port at the beginning of a work period.
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The proof for this case is identical to the proof for the relative case. Thus we can use
the ‘no-slack’ algorithm to identify schedules which may be included in a feasible solution.
However, for this case, even if we could identify a ship schedule which was guaranteed to
be included in a feasible series of schedules, it is not clear how to identify the remaining
schedules in the series.

Assume we are given a Multiple ships / Cyclical Schedules / No slack problem of
the Relative Time Windows Frequency Policy variety. First, we examine the informa-
tion we must be given.

1. A ship schedule = travel times, t¢; and port times, p;,2 =1,...,n.

2. A work schedule = work period times, wp; and nonwork period times, nwp;,1 =
1,...,m.

3. A frequency policy, F' = a set of minimum times, Fmin;, and window lengths, Fwin,,: =
1...,f (I e. f = number of ships).

First, we construct the set of feasible start times for the associated single ship problem,
call it FST;. This we can do in O(nm) time. We note that the set of feasible start times will
consist of no more than nm intervals. Thus now we can easily determine whether a given
start time is feasible or not and given an infeasible start time, we can determine the next
occurring feasible start time.

Now, consider the following transformation:

1. Define tt; = Fmin;and p; = 0,1 =1,..., f.

2. Define wp; = the length of the ith feasible interval and nwp; = the length of the ith
non-feasible interval in FST;.

We now have a Single ship / Cyclical schedule / slack problem where we are seeking a
solution in which each port (starting of a ship) time occurs during a work (feasible starting
time) period. However, we now have the added stipulation that we can insert no more than
Fwin, slack at the sth port. This is a problem similar to, but more difficult then problems
we have solved before. Thus, we have a dual purpose for solving this problem. It will extend
existing work in two extremely different directions.

Lemma 13 Given a Single Ship / Cyclical Schedule / No slack problem in which all
data (both the ship schedule and work schedule) are integers, then any start time which has
the ship arriving at the beginning of a work period will have an integral start time.

Proof. Let a Single Ship / Cyclical Schedule / No slack problem with all integral
data be given. Let ST be a start time in which the ship arrives at port ¢ at the beginning
of work period j. We wish to show that ST is integral. Now, ST = the sum of all work and
nonwork periods preceding work period j - the sum of all port and travel periods preced-
ing port period 3. Now since all data is integral, the sum of all work and nonwork periods
preceding work period j is the sum of integers which implies the sum is integer. Similarly,
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the sum of the port and travel periods is an integer. Thus, since ST is the difference of two
integers, then ST is an integer. O

Similarly, we can prove that any start time in which the ship leaves a port at the end of
a work period will be integral.

These two results imply that if our Multiple ships / Cyclical Schedules / No slack
problem has all integral data, then the feasible-non-feasible schedule generated will consist
of integral data.

Conjecture 1 If a Multiple ships / Cyclical Schedules / No slack problem has all
integral data and a feasible solution ezists, then a feasible integral solution ezists.

5.2.16 Multiple ships / Cyclical Schedules / Slack

Fixed Time Frequency Policy A Fixed Time Frequency Policy provides a specific time
link between the Work Schedule and the Ship Schedule. Again, the Fixed Time Frequency
Policy is easy to solve for the slack case. We simply test the feasibility of the Work Schedule °
and Ship Schedule time link for each ship.

Fixed Time Windows Frequency Policy This case is similar to a Fixed Time Fre-
quency Policy, except that a time window is given for each ship. Since the ship departure
times are independent, then we simply test the feasibility of each ship, thus we can use a
previous lemma regarding feasibility and a time window on the start time of the ship.

Relative Time Policies For the slack version of the Relative Time Policies, we have
problems similar to the ‘no slack’ case. We also have an additional definition problem. If we
examine two final ship schedules which do not have slack occurring in the same places, then
the time difference between fixed points in the schedules will not always be the same. For
example, ship 2 may leave the first port three days after ship 1, however, ship 2 may leave the
third port only two days after ship 1 due to the location of slack in the two schedules. Thus,
we propose the following: relative time policies will ignore slack. In other words, relative
time policies will be stated in terms of the ship schedules whereas fixed time policies are
stated in terms of the work schedules. Note that this definition is reasonable and consistent
with the ‘no slack’ case. In that case, the difference is transparent since the ship and work
schedules are of the same length.

5.3 Extensions, Generalizations, and Questions

1. Assume RT'T # 7. We could stack multiple round trips in hopes of obtaining a feasible
repeating schedule with less slack. Note that we should be able to use the algorithms
for the above cases to solve this problem.

2. Is there an easy way to determine alternative ways of placing ships? For example,
given a three week schedule, is it possible to place 2 ships 10.5 days apart?
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3. What is the limit of these algorithms? I. e. for what general cases do they NOT hold?

4. What insight can these algorithms provide for setting feasible ranges for the port and
travel times?

6 Volvo Shipping Problem

Volvo is considering shipping all of its cars to the United States from the plant to the
dealers entirely in containers. Thus it will contract with Shipping Company to transport the
containers from Europe to the U.S. and with Trucking Company to transport the containers
to the individual dealers. We wish to find the plan which minimizes total cost.

6.1 Main Issues

European Port(s): Assuming that Volvo is using its own drivers to move the containers
from plant to port, then Volvo would have two considerations in choosing a Euro-
pean port: 1) distance from plant to port in order to minimize transport costs and
2) port storage costs in order to employ a small number of drivers which are busy
continuously. In addition, assuming that variable costs (per container costs such as
per container loading/unloading charges, tariffs, etc.) are passed directly to the ship-
per, Volvo would want these costs considered in choosing an European port. However,
Shipping Company would consider the fixed port costs (docking fees, lease agreements,
etc.) in choosing the European port to operate the service from. In addition, Shipping
would consider the number of inbound and outbound containers that it would have
access to in order to have a full ship. In fact, to ensure full loads, Shipping might have
to operate out of multiple ports. This would increase the fixed costs Shipping would
incur and the inventory carrying costs Volvo would incur and thus the total costs. In
actuality, various government regulations may also affect the choice of European ports.

Service: Both Volvo and Trucking Company would want frequent service. Frequent service
would reduce Volvo’s inventory costs (storage, investment costs, etc.) and provide
Trucking with a smaller, more manageable job (per shipment) on the American side.
However, frequent service would require Shipping to operate more ships for the same
route and would possibly require additional container bookings to ensure full ships.

American Port(s): We assume the per-container charge to Volvo from Shipping is based
on the distance from the European port to the American port and that the change in
distance from the European port to various American ports is minor. Then, assuming
that it is cheaper to transport containers by ship than truck, Volvo would certainly want
Shipping to provide service to many American ports. Also, again assuming variable
costs are passed back to the shipper, Volvo would also want to use the ports with
lower variable costs. However, Shipping would want to use as few ports as possible and
choose these ports based on fixed port costs and the number of outbound and additional
inbound containers necessary to insure full sailings. Finally, Trucking would want the
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ports that Shipping serves to depend on per-container storage fees and would possibly
want to use ports with which it has existing business.

Additional Issues

Whose containers should we use? How should we deal with the empty containers? It
certainly seems that Volvo would use racks to ship the cars. Certainly these would
need to be returned to the plant in some way.

. What is the ideal capacity of the ships?

How many trucks do we need?

Given that we have a large number of containers arriving at a port, how do we schedule
and route the trucks in order to balance delivery service requirements with steady work
for the truck drivers?

Stowage of containers: A particular container would have to be shipped to a particular
dealer. The order containers are handled in would affect cost. Given a loading order,
can we determine the cost?
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